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Abstract. Formal effort required to specify and analyze architectures
using formal languages is high. This has motivated us to build a soft-
ware tool that allows the interpretation of component-based software
architecture described using ρarq calculus. This tool offers the display
facility to architects on a graphic way the structure and the architec-
tural execution flow described in the formal expressions under study.
For the development of this software tool some different modules were
considered, altogether, they interpret expressions in accordance with the
syntax and the operational semantics of the ρarq calculus; in addition, the
tool maps the formal expressions to UML 2.x notation graphic elements.
In this way, the application displays the architectural configuration using
a visual modeling language(UML components) while showing the archi-
tectural execution flow by highlighting the provision interfaces when a
ρarq calculus rewriting rule is executed. The ρarq calculus use is simplified
with this. The architectural analysis tasks will be easier and the architect
could focus on the architectural behavior and not on the calculus itself.

Keywords: ρarq calculus · Component-based software · Architectural
execution flow · UML

1 Introduction

Software architecture has received plenty attention in the last decade because it
allows better comprehension, reuse levels, control and management capabilities
of software development projects [18]. This software engineering’s knowledge-
area emerged at end of the past century [10]. Subsequently, several architectural
description languages has been proposed with less or more formal approach (See
Table 1 for a not exhaustive list of related work).

Some approaches have proposed UML as the basis to describe software archi-
tectures [11,22]. Although UML has been a popular modeling language for many
years [30,33], this modeling language is still semiformal. However, nowadays it
supports component-based software models that include the essential concepts
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Table 1. Related work about structural and dynamic modeling in several ADLs.

ADL ¿STRUCTURAL MODELLING? ¿DYNAMIC MODELLING?

WRIGHT [1] Connector types were used to describe the

interaction between components

The interaction was modelled with

Hoare’s CSP [16]

UNICON [36] Compositional design of software

architectures. This ADL use conector types

It doesn’t propose a formal model for

this aspect

RAPIDE [19] Module specifications were used to describe

the wired components, connection rules and

restrictions to identify legal and illegal

assembly patterns of modules

Use Partially Ordered Set of Events

(POSET model)

SYNTACTIC

APPROACH [4]

Set theory was used to model node types

and connections at software architectures. It

can model partially architectures or static

perspective of sub-architectures

It doesn’t propose a formal model for

this aspect

UML [22] From UML 2.x this language provides the

component, provide and require interfaces as

architectural abstractions. Assembly

connectors and composite structures allow

complex architectural configurations

The interaction diagrams and state

machines provide semiformal modelling

possibilities. Meta-modelling extensions

can be used to support analysis of

dynamic properties

AO-ADL [34] It supports the definitions of component,

connector and functional restrictions on

connections. The restrictions on interfaces

should be satisfied

Temporal Logic (TL) and other tools

that

ACME [9] It uses annotations to specify structural

properties or additional restrictions

The last versions have the ACMELib

library. It allows to programme the

behavior of architectures. ACME is

inherently extensible and it allows

architects to associate an external

formal model. This model could specify

the dynamic aspects of software

architectures

DARWIN [20] It supports hierarchical models. It uses

canonical textual representations. These

representations describe the components

and their interfaces

It uses the π − calculus as formal tool.

It models dynamic architectures (i.e.

architectures changing on execution

time)

xADL [3] It defines the basic structures of prescriptive

software architectures: Components,

connectors, interfaces, links and groupings

It doesn’t propose a formal model for

this aspect

Weaves [13] It uses directed bipartite multigraphs to

model interconnected networks of

components. It can be seen as a variant of

the architectural style Pipe-and-Filter

It doesn’t propose a formal model for

this aspect

CHAM [17] The syntax models structures and

configuration. This syntax uses the analogy

of chemical solutions and molecules

It has an expressions rewriting system

based on chemical reaction concept

KOALA [28] It describes structures, configuration and

component interfaces within the domain of

electronic devices. It inherits properties of

Darwin language

Idem to Darwin language

ADML [40] It specializes ACME with meta-properties Analogous to ACME

ASDL [35] It uses Z language to specify structure and

static restrictions

It adds Hoare’s CSP expressions to

specify dynamic aspects on the interfaces

AADL [8] Quality attributes driven design is

supported. It uses compliance static analysis

and data consistency

It accepts extensions to formal

methodsde trabajo

π-ADL [29] It provides graphical and textual syntax in

accord with UML 2.x profile. This profile

models software architectures

π-calculus typed of high order

SAM [15] It can use a graphical and textual syntax. It

allows horizontal and vertical hierarchical

partitioning

It allows graphical simulation. Formal

techniques as Petri nets and Temporal

Linear Logical can be used
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of software architecture [27]. Extending UML with a formal tool allows exploit-
ing the analysis possibilities that formal tools offer while the software architects
stays within the same design framework. We propose PintArq, a tool allowing
software architects to visualize the architectural execution flow.

The PintArq tool uses a built-in interpreter that transforms ρarq calculus
expressions [5,6] into Tex format [12] to visual representation of software archi-
tectures as wired components in concordance with UML 2.x notation [27]. Addi-
tionally, the tool enables users to show the execution flow in accordance with
ρarq calculus rewriting rules (Operational semantics).

To begin with we show an overview of the ρarq calculus. Then, the methodol-
ogy to develop the PintArq tool is explained step by step. Third section analyses
results from three points of view: Transformation tools, logical architecture and
technological aspects. The last sections discuss some conclusions and future work.

2 ρarq Calculus Overview

The ρarq calculus is a formalism to specify component-based software architec-
tures; this calculus models dynamic and structural aspects with the possibility to
control architectural executions based in boolean guards. As all formal calculus
it comprises a syntax and semantics. Table 2 summarizes the syntactic entities
with their meanings and interpretations of ρarq.

Replacements of any expression by other is governed by structural congruence
rules (Table 3).

The semantic of ρarq calculus is based on rewriting rules. These operational
semantic rules are shown in Table 4.

For illustration purposes, some basic examples of several architectural con-
figurations and architectural execution flow are shown at Table 51.

3 Method

The first version of PintArq project involved the following steps:

3.1 The Study of the ρarq Calculus

For the purpose of representing ρarq calculus expressions using the extended
BNF [25,32], the TEX format [12] was used. This activity was crucial in order to
specify the formal source language that the interpreter transforms to other visual
language. The Table 6 shows the equivalence between ρarq expressions against
TEX expressions.

1 For more details about syntax, semantics and examples of architectural execution
control (i.e. architectural control flow) see [6,7].
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Table 2. Syntax of ρarq calculus. Source: [6,23,26,38,39]
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Table 3. Structural congruence rules of ρarq calculus. Source: [6,26]

Table 4. Rewriting rules of ρarq calculus. Source: [6,26]

3.2 Transformation Technology: Review and Selection

Three alternatives were evaluated in order to transform from formal textual
expressions to UML graphical notation: Model Driven Architecture (MDA) tools
[14,37,41], DUALLY [21] and ANTLR [31].

Based in the possibilities and the capabilities of each tool, ANTLR was the
selected tool to implement PintArq because it is extensible by using a pro-
gramming language that supports the tasks derived to accomplish the rewriting
calculus and the transformation to UML 2.x.

3.3 Analysis, Design and Implementation of Software

Four subactivities were conducted:

1. Definition of prescriptive architecture.
2. Analysis and design.
3. Programming of the “web enabled” application.
4. Specification of ρarq Calculus grammar and basic architectural expressions

proposed in [5,6] for the testing phase.

3.4 Concept Testing

Once the application was developed, a set of tests was executed to verify the
appropriate interpretation of expressions and rewriting rules of architectures
defined using ρarq calculus. The objective of these tests were:

– Verify operational semantics in action.
– Test mapping from ρarq calculus to UML’s component-based diagrams.
– Review of visualization for architectural execution flows.
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Table 5. ρarq calculus in action: a sample
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4 Results

4.1 ¿How ANTLR Was Applied?

Table 6 shows the correspondence between the ρarq calculus expressions and the
TEX expressions:

Table 6. Equivalence of ρarq expressions to TEX expressions

ρarq expression Typography TEX

Composition A ∧ B A \wedge B

Null component ⊤ \top

Interior of component A(int) A∧{(int)}

Committed choice combinator if(C1...Cn) else A if(C1)(C2)...(Cn) else A

Abstraction x :: y/E x::y/E

Application xy/E x\overline{y}/E

Declaration ∃wE \existswE

Abstraction replication x : y/E x::y/E

Successful execution E⊤ E∧{\top}

Non-successful execution E⊥ E∧{\bot}

On Success Of OSO(E)do F else G OSO(E) do F else G

Replication of OSO rule !OSO(E) do F else G !OSO(E) do F else G

Logic truth ⊤̇ \dot{\top}

Logic false ⊥ \bot

Equational restriction x = y x = y

Conjunction of constraints φ∧̇ψ φ\dot{\wedge}ψ

Existential quantifier ∃̇xφ \dot{\exists}xφ

Once the language definition was ready, the next step was to generate the
API that let the manipulation and identification of each word in the architectural
expressions. With this API it was possible to implement the Interpreter module
by using the design patterns offered by ANTLR (Observer and Visitor) [31].

4.2 The Architecture of the Application

Figure 1 shows the architectural inception for PintArq. The component-
connector diagram with stereotyped components as modules depicts the archi-
tectural configuration with assembly connectors; these lastly were labeled with
the name of data-structures that flow between modules.
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Fig. 1. The prescriptive architecture of PintArq

4.3 The Tool

The PintArq tool was built using the Java programming language, XML tech-
nologies (SVG and XMI) and ANTLR tool, the first version is web enabled. The
tool is publicly available at: http://arquisoft.udistrital.edu.co/PintArq/Index.
jsp. Some analyzable expressions can be downloaded from: http://arquisoft.
udistrital.edu.co/documentos/EjemplosExpresionesArq.rar.

Figure 2 shows the PintArq’s graphical user interface when the user loads an
architectural configuration specified by ρarq calculus expressions2:

When the user presses the PLAY button, the visualizer shows the archi-
tectural execution flow that operational semantics in action produces and the
user can see how a token passes between interfaces. In this case, the ρarq formal
expressions are:

S =Arch ∧ T ransf ∧ Drawer ∧ Rewriter ∧ Interp

∧ (OSO (Interp) do (CIR ∧ CIA ∧ Rewriter
⊤

) else τInterp) ∧ Interp
⊤

∧ (OSO (Arch) do (CAG ∧ CAT ) else τArch)

∧ OSO(Rewriter)do(CRA ∧ Arch
⊤

)elseτRewriter

where each component was specified as:

Interp = RLoad ∧ P ArcInitialANT LR ∧ P ArchitectureANT LR

RLoad = ∃lInterp[(rInterp : x/xlInterp) ∧ (lInterp : F ile/Interp
(int)

)]

P ArcInitialANT LR = (p1Interp : y/yArchitectureANT LR)

P ArchitectureANT LR = (p2Interp : y/yArchitectureANT LR)

Rewriter = RArchitecture ∧ P Rewriter

RArchitecture = ∃lRewriter [(rRewriter : x/xlRewriter) ∧ (lRewriter : Architecture/Rewriter
(int)

)]

P Rewriter = (pRewriter : y/yArchitectureW ritten)

2 These expressions should be written in TeX format.
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Arch = RArchitectureArch ∧ P ArchitectT rans ∧ P ArchitectGraf

RArchitectureArch = ∃lArch[(rArch : x/xlArch) ∧ (lArch : Architecture/Arch
(int)

)]

P ArchitectT rans = p1Arch : y/yObjectsArchitecture

P ArchitectGraf = p2Arch : y/yObjectsArchitecture

T ransf = RArchitectureT ransf ∧ P T ransf

RArchitectureT ransf = ∃lT ransf [(rT ransf : x/xlT ransf ) ∧ (lT ransf : Architecture/T ransf
(int)

)]

P T ransf = pT ransf : y/yArchitectureXMDrawerI

Drawer = RArchitectureDrawer ∧ P Drawer

RArchitectureDrawer = ∃lDrawer [(rDrawer : x/xlDrawer) ∧ (lDrawer : Architecture/Drawer
(int)

)]

P Drawer = pDrawer : y/yArchitectureSV G

The assembly connectors are:
CIR = rRewriterp2Interp

CRA = rArchpRewriter

CIA = rArchp1Interp

CAT = rT ransf p1Arch

CAG = rDrawerp2Arch

Fig. 2. The PintArq’s graphic interface

5 Conclusions

In line with research works about languages that allow to simulate the execu-
tion of software architectures as Rapide [19], Archware ADL [24], Pi-ADL [29];
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a visualizer of architectural execution flow for software component-based was
described in this paper. In this work, the interpreter of ρarq expressions iden-
tifies the structural elements and it transforms the architectural expressions to
UML component-configuration [27]. Then, the PintArq tool visualizes the exe-
cution flow according to ρarq’s operational semantics [5,6]. The interpretation
engine was based in ANTLR [31] and the expressions were wrote in Tex for-
mat [12]. The prescriptive architecture was shown in the Fig. 1 and the concise
description was done in the Sect. 4.

The research group ARQUISOFT is committed to the Open Models initia-
tive. In consequence, the prescriptive architecture, functional models, structural
models and dynamic models can be found in the ARQUISOFT’s web portal:
http://arquisoft.udistrital.edu.co/modelos/modelPintArqHTML/, for any inter-
ested reader.

6 Future Work

Since software architects may not know the complexities of formal calculus and
prefer to concentrate their efforts on analysis tasks. A second phase of PintArq
project will develop an interpreter from component-based visual models to ρarq

expressions and this result will be integrated to actual version. Additionally, the
correctness checking with ρarq calculus proposed in [7] must be incorporated in
a new version of PintArq at a future.
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y Telemática 1, 63–75 (2006)

12. Goossens, M., Mittelbach, F., Samarin, A.: The LaTeX Companion. Addison-
Wesley, Reading (1994)

13. Gorlick, M., Razouk, R.: Using weaves for software construction and analysis. In:
13th International Conference on Software Engineering, Proceedings, pp. 23–34,
May 1991

14. Guerra, E., de Lara, J., Kolovos, D., Paige, R.: A visual specification language for
model-to-model transformations. In: IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp. 119–126 (2010)

15. He, X., Yu, H., Shi, T., Ding, J., Deng, J.: Formally analyzing software architectural
specifications using SAM. J. Syst. Softw. 71, 11–29 (2004)

16. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21, 666–677
(1978). http://doi.acm.org/10.1145/359576.359585

17. Inverardi, P., Wolf, A.: Formal specification and analysis of software architectures
using the chemical abstract machine model. IEEE Trans. Softw. Eng. 21(4), 373–386
(1995)

18. Bass, L., Paul Clements, R.K.: Software Architecture in Practice, Chap. 2. SEI Series
in Software Engineering. Addison Wesley, Boston (2013)

19. Luckham, D.C.: Rapide: a language and toolset for simulation of distributed systems
by partial orderings of events. Technical report, Stanford, CA, USA (1996)

20. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software
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